a2 United States Patent

Beveridge

US009250827B2

US 9,250,827 B2
Feb. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54) STORING CHECKPOINT FILE IN HIGH
PERFORMANCE STORAGE DEVICE FOR
RAPID VIRTUAL MACHINE SUSPEND AND
RESUME

(71)
(72)

Applicant: VMware, Inc., Palo Alto, CA (US)

Inventor: Daniel James Beveridge, Apollo Beach,

FL (US)
(73) VMware, Inc., Palo Alto, CA (US)

")

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 332 days.

@
(22)

Appl. No.: 13/764,516

Filed: Feb. 11, 2013

(65) Prior Publication Data

US 2014/0173213 Al Jun. 19, 2014

Related U.S. Application Data

Provisional application No. 61/849,808, filed on Dec.
14, 2012.

(60)

Int. Cl1.
GO6F 12/00
GO6F 3/06
GO6F 12/08
GO6F 12/12
GO6F 11/14
GO6F 9/00
U.S. CL
CPC GO6F 3/0655 (2013.01); GO6F 3/0689
(2013.01); GOGF 9/00 (2013.01); GO6F 11/14
(2013.01); GOGF 12/084 (2013.01); GO6F
12/0813 (2013.01); GO6F 12/0868 (2013.01);
GO6F 12/126 (2013.01); GOGF 11/1438
(2013.01); GOGF 2201/815 (2013.01); GO6F
2212/152 (2013.01); GO6F 2212/217 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)

(58) Field of Classification Search

CPC GOG6F 12/0891; GOGF 12/0868; GO6F
12/121; GOGF 12/084; GOGF 12/0842; GO6F
12/127; GO6F 12/12; GO6F 2212/6042;
GOGF 9/45558; GOGF 2201/815; GOGF 3/0655;
GOG6F 9/00; GO6F 12/126; GOGF 11/14;
GOG6F 3/0689; GOGF 12/0813; GOGF 11/1438,
GO6F 2212/217; GO6F 2212/152; Y02B
60/1225
............. 711/134, 135, 144, 145, 130, 6, 141;
718/1

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,795,966 B1* 9/2004 Limcco... GO6F 11/1438
718/1

7,484,208 B1* 1/2009 Nelsoncoocvevvveenrionrnns 718/1
8,239,633 B2* 82012 Woodco..t. GO6F 12/0815
711/141

8,285,808 B1* 10/2012 Joeletal.c.oovv.. 709/213
8,307,187 B2* 11/2012 Chawla et al. 711/173
8,793,427 B2* 7/2014 Limetal.c.coovvvvenrrnne. 711/6

(Continued)

Primary Examiner — Hong Kim

(57) ABSTRACT

A method of enabling “fast” suspend and “rapid” resume of
virtual machines (VMs) employs a cache that is able to per-
form input/output operations at a faster rate than a storage
device provisioned for the VMs. The cache may be local to a
computer system that is hosting the VMs or may be shared
cache commonly accessible to VMs hosted by different com-
puter systems. The method includes the steps of saving the
state of the VM to a checkpoint file stored in the cache and
locking the checkpoint file so that data blocks of the check-
point file are maintained in the cache and are not evicted, and
resuming execution of the VM by reading into memory the
data blocks of the checkpoint file stored in the cache.

20 Claims, 5 Drawing Sheets

08| | VDI Clent 110 | /1»0
05 111 VM Management
— Server 140
DRS
4
I 150 152 I 154
Z yi 2
156 157
Virualzation SW Virtualzation SW Virualzaton SW
Cache. Checkpt Cache: Checkpt
warege || Mode werager || ode
Hardware Hardwars
Host Computer Host Computer

l

US 9,250,827 B2

Page 2
(56) References Cited 2013/0097377 Al1* 4/2013 Satoyama GOG6F 3/0605
711/114
U.S. PATENT DOCUMENTS 2013/0111474 AL* 52013 Agarwalet al. .oooooooooeen.... 718/1
2014/0047193 Al* 2/2014 Grossetal.cccoovennn. 711/144
2006/0227585 Al* 10/2006 Tomodaooovveeeocvevvenin, 365/36 2014/0068181 Al* 3/2014 Mridhaetal. ... 711/114
* , 2014/0115228 Al* 4/2014 Zhouetal. 711/102
gg?gfgfggéﬂ 2} . %8% &f‘;ﬁﬁ‘;{;ﬁ """ 6661]}%(1)243; 2014/0156910 Al* 6/2014 Uttamchandani et al. ... 711/103
SEMNEUMET ... 718/1 2014/0173196 Al* 6/2014 Beveridge et al. .. 711/114
N ;

2012/0204060 AL* 82012 Swifietal ... 714/15 2014/0173213 Al* 6/2014 Beveridgeccccoovvvinn 711/130

2013/0067289 Al* 3/2013 Maislos etal. 714/54 * cited by examiner

U.S. Patent Feb. 2, 2016 Sheet 1 of 5 US 9,250,827 B2
188 vor ciient 110 J
0S 111 VM Management
— Server 140
A
DRS
41
A
A 4 A
K K 7}
150 152 154
A 4 / y / A /
VM| YM]...| VM VMI[IVM|...| VM VMI[|YM|...| VM
168~ 157
[l Virtualization SW Virtualization SW Virtualization SW
Miar]](;th (,i/lh:;l;? Cache Checkpt Cache Checkpt
19 19 192 Manager Module Manager Module
160\
s Hardware Hardware Hardware
C'?Uf) Mﬁrg;ry cPU(s) | | Memory cPU(s) | | Memory
Locj‘ggSD Local SSD Local SSD
Host Computer Host Computer Host Computer

A

y

A

y

A

—Y—Y)
n
w
o

— A A

FIG. 1

U.S. Patent

— Normal VM provisioning

Feb. 2, 2016 Sheet 2 of 5

210

Receive request for VM provisioning

212

Rapid suspend/
resume enabled?

214

Find host computer with sufficient
unreserved cache space
216

US 9,250,827 B2

217

o>

Return error

218 \%

Select as host for VM

Y

Make reservation against
cache space

I

End

FIG. 2

U.S. Patent Feb. 2, 2016 Sheet 3 of 5
310
Select VM to be
suspended
l 312
P
Issue command to
host of selected VM
to suspend the VM l 320

Receive request to
suspend VM

322

US 9,250,827 B2

323

VM size >
free cache?

Evict cached blocks
to free up enough space

324

Save VM state in cache

]

Lock saved VM state in cache

314

Reduce cache size
by VM size

End

FIG. 3

U.S. Patent Feb. 2, 2016 Sheet 4 of 5 US 9,250,827 B2

410

Receive request to resume VM

412 420

Issue command to host with
cache in which VM is suspended
to resume the VM therein

VM suspended in
shared cache?

414 499

vMotion

Select host in which to resume VM needed?

41 6\ L
Issue command to selected host .
to resume VM therein Migrate resumed VM

430 l< Y
-

Increase cache size by VM size
and make reservation against
cache space

424

End

FIG. 4

U.S. Patent Feb. 2, 2016 Sheet 5 of 5 US 9,250,827 B2
SSD Cache
(cache size = 72 GB) 500
Cache R F
VM1 | VM2 | VM4 | VM6 Size esv ree
|~ 501 72 GB 18 GB None
I
511 Suspend VM1, Evict 4 GB
A 4
Lock VM2 VM4 } VM6
|~ 502 None =
68 GB 14 GB 6GB
I
512 Suspend VM2
A 4
Lock Lock VM4 t VM6
|~ 503 62 GB 8 GB 0GB
I
513 Resume VM1 and VM2
\ 4
VM1 VM2 VM4 } VM6
|~ 504 72 GB 18 GB 10 GB

FIG. 5

US 9,250,827 B2

1
STORING CHECKPOINT FILE IN HIGH
PERFORMANCE STORAGE DEVICE FOR
RAPID VIRTUAL MACHINE SUSPEND AND
RESUME

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/849,808, filed Dec. 14,2012,
the entire contents of which are incorporated by reference
herein.

BACKGROUND

Virtual machine (VM) suspend/resume is a feature in vir-
tualized computer systems that allows administrators to save
the running state of a VM and at a later time restore the VM to
the exact same running state as when it was suspended. One
benefit of resuming from a suspended VM is that the VM does
not have to go through a complete boot cycle and as a result
the VM can be brought on-line quickly with little or no dis-
ruption experienced by users.

The VM suspend/resume feature allows administrators to
make efficient use of server resources that support the running
VMs. Inactive, but otherwise live, VMs can be suspended to
prevent them from consuming server resources. The server
resources allocated to the suspended VMs can be re-allocated
to active VMs that may benefit from the extra resource avail-
ability. In a virtual desktop environment, such as Virtual
Desktop Infrastructure (VDI) which is commercially avail-
able from VMware, Inc., the resource savings can be enor-
mous because studies have shown that many users stay logged
into their remote desktops even though they have discon-
nected from the remote desktop sessions.

The process of suspending a VM is also referred to as
checkpointing, which is described in U.S. Pat. No. 6,795,966,
incorporated by reference herein in its entirety. During the
VM suspend process, a file (known as a checkpoint file) is
created on a storage device, typically a disk array, and the
state of the VM, including its memory and CPU state, is stored
in the file. During VM resume, this same file is loaded into
memory to restore the state of the VM. With a shared storage
device, itis possible to resume the VM on a different host than
where it was suspended.

The VM suspend/resume process described above works
well for the occasional suspend/resume of VMs, but does not
scale if many VMs are suspended or resumed at the same
time. When a large number of VMs are suspended at the same
time, known as a “suspend storm,” the process can take a long
time to complete and consequently the benefits gained from
freeing up hardware resources from the VM suspensions
would be delayed. For example, if 100 VMs each having 4 GB
of allocated memory are suspended at the same time, this
would resultin a 100x4 GB (400 GB) of data being written to
the storage device. The same applies to a “resume storm,”
where many users are requesting connections to their VMs at
about the same time. In the above example of 100 VMs, if
users of such VMs were to request connections to their VMs
at about the same time, the VM resume process would require
400 GB of data to be read from the storage device and loaded
into memory, inevitably delaying many of the connections
requested by the users.

While the impact of the suspend storm can be mitigated to
an extent, by scheduling the VM suspensions in a staggered
fashion to offset the load on the storage device, the resume
storm cannot be staggered, because users are expecting to

15

20

25

30

35

40

45

2

access their VM shortly after they have requested access. As
a result, the storage device becomes a bottleneck when
resuming a large number of VMs at about the same time.

SUMMARY

One or more embodiments disclosed herein provide tech-
niques that enable “fast” suspend and “rapid” resume of VMs
by employing a cache that is able to perform input/output
operations (IO) at a faster rate than a storage device provi-
sioned for the VMs. The cache may be local to a computer
system that is hosting the VMs or may be shared cache com-
monly accessible to VMs hosted by different computer sys-
tems.

A method of resuming execution of a VM from a sus-
pended state in one of a plurality of host computers each
having a local cache and connected to a shared cache, accord-
ing to an embodiment, includes the step of determining
whether a suspended image of the VM is stored in the shared
cache. If the suspended image of the VM is stored in the
shared cache, one of the host computers is selected as a host
computer for the VM and a command is issued to the selected
host computer to resume execution of the VM therein. If the
suspended image of the VM is not stored in the shared cache,
a command is issued to one of the host computers that has the
local cache in which the suspended image of the VM is stored
to resume execution of the VM therein.

Further embodiments of the present invention include a
non-transitory computer-readable storage medium compris-
ing instructions that cause a computer system to carry out one
or more of the above methods.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a virtualized com-
puter system that implements suspend and resume techniques
according to one or more embodiments.

FIG. 2 is a flow diagram of a VM power on process accord-
ing to an embodiment.

FIG. 3 is a flow diagram of a VM suspend process accord-
ing to an embodiment.

FIG. 4 is a flow diagram ofa VM resume process according
to an embodiment.

FIG. 5 is a conceptual diagram that illustrates an example
of cache reservations according to one or more embodiments.

DETAILED DESCRIPTION

FIG. 1 is a simplified block diagram of a virtualized com-
puter system that implements suspend and resume techniques
according to one or more embodiments. In FIG. 1, the virtu-
alized computer system depicted in a simplified block dia-
gram is a virtualized desktop infrastructure (VDI) system
100. Although the example provided herein is a virtualized
desktop system, it should be recognized that suspend and
resume techniques according to one or more embodiments
may be practiced in other types of virtualized computer sys-
tems.

In VDI system 100, users are running VDI client software
programs (hereinafter referred to as “VDI client 110” indi-
vidually and “VDI clients 110” collectively) on local com-
puting devices 108. VDI client 110 provides an interface for
a user to access his or her desktop, which may be running in
one of virtual machines (VMs) 157 or blade server (not
shown)in a data center that is remote from the user’s location.
The term, “desktop” refers to the instance of an interactive
operating environment provided by a computer operating

US 9,250,827 B2

3

system and software applications, typically in the form of a
display and sound output and keyboard and mouse input.
With VDI clients 110, users can access desktops running in a
remote data center through a network (e.g., Internet) from any
location, using a general purpose computer running a com-
modity operating system (OS) 111 and a VDI client software
program such as VMware® View™, or a special purpose thin
client such as those available from Dell, HP, NEC, Sun Micro-
systems, Wyse, and others.

In the embodiments described herein, desktops are running
in virtual machines 157 and virtual machines 157 are instan-
tiated on a group of host computers commonly referred to as
acluster (depicted in FIG. 1 as host computers 150, 152, 154).
Each of the host computers includes virtualization software
158 and hardware 160, including one or more CPUs 161,
system memory 162, and local solid state drive (SSD) 163,
and is coupled to a shared SSD array 164 and a shared disk
array 170. Local SSD 163 is implemented as a multi-purpose
10 cache for ahost computer to speed up any 10s requested by
the VM running therein. Shared SSD array 164 is imple-
mented as a multi-purpose 10 cache for the host computers
connected thereto to speed up any 10s requested by the VMs
running in them. In one embodiment, shared SSD array 164 is
implemented according to techniques disclosed in U.S. Pro-
visional Patent Application Ser. No. 61/728,207, filed Nov.
19, 2012, the entire contents of which are incorporated by
reference herein. The embodiments disclosed herein also
implement local SSD 163 and/or shared SSD array 164 as an
10 cache to enable a VM to be suspended and resumed more
rapidly. A virtual machine management server 140 controls
VM power on/off in the host computers and has a resource
management software module running therein (depicted in
FIG. 1 as distributed resource scheduler (DRS) 141) to allo-
cate hardware resources to the VMs (including the local SSD
and shared SSD resources) and also perform load balancing
on the hardware resources across the VMs. Cache manager
191, which is a component of virtualization software 158,
manages the usage of'the local SSD and shared SSD resources
in conjunction with DRS 141. In other embodiments, storage
devices other than SSD may be used, such as phase change
memory, so long as they have lower input/output latency and
higher input/output throughput than shared disk array 170.

When a user desires to connect to a remote desktop through
VDI client 110, the user launches VDI client 110 on local
computing device 108 and logs in by providing user creden-
tials. VDI client 110 then communicates with a connection
broker (not shown) to authenticate the user. If the authentica-
tionis successtul, VDI client 110 connects directly to a virtual
machine that is configured by VM management server 140 to
run aninstance ofthe user’s desktop. Until the user logs out of
his or her desktop, the instance of the user’s desktop will
continue running in the virtual machine and will continue
consuming hardware resources needed by the virtual
machine. In situations where many users do not log out of
their remote desktops although they may have disconnected
their sessions, hardware resources that are reserved for virtual
machines that are supporting such inactive remote desktops
can be unnecessarily high. As a way to permit allocation of
such reserved but unused hardware resources to other VMs, a
checkpoint module that is part of the virtualization software
(e.g., checkpoint module 192 of virtualization software 158)
is used to suspend the VMs that may still be running to
support the inactive remote desktops so that the hardware
resources of the VMs, upon suspension, can be freed for
reallocation. When users reconnect to their remote desktops,
the VM supporting such remote desktops are resumed.

10

25

30

40

45

55

4

According to one or more embodiments, the state of the
suspended VMs is stored in a cache that is able to perform 10
with lower latencies and higher throughputs than a storage
device provisioned for the VMs. In the embodiment depicted
in FIG. 1, the cache is the multi-purpose cache discussed
above, and may be local SSD 163 or shared SSD array 164,
and the storage device provisioned for the VMs is shared disk
array 170 and is hereinafter sometimes referred to as “stor-
age.” In addition, the SSDs of local SSD 163 and shared SSD
array 164 may be implemented as flash memory and included
as one of hardware resources managed by DRS 141. A file
system is implemented in the cache so that the state of the
suspended VMs can be saved into the cache as a file and
restored from the file during resume. This file is referred to
herein as a “checkpoint file” and represents an object that can
be created, opened, closed, read, written, and deleted the
same way like any object in shared disk array 170.

In the virtualized computer system of FIG. 1, the suspend/
resume techniques according to one or more embodiments,
referred to herein as “rapid suspend/resume,” may be enabled
for any one of the VMs. FIG. 2 is a flow diagram of a VM
power on process that includes additional steps for VMs that
have been enabled for rapid suspend/resume. The steps
shown in FIG. 2 are carried out by virtual machine manage-
ment server 140.

The VM power on process begins at step 210 when virtual
machine management server 140 receives a request to power
on a VM. At step 212, virtual machine management server
140 checks a configuration file for the VM to see if the VM has
been enabled for rapid suspend/resume. If not, the VM is
powered on in the normal manner (step 222). If the VM has
been enabled for rapid suspend/resume, virtual machine man-
agement server 140 through DRS 141, which tracks all of the
prior cache reservations made, searches for a host computer
that has sufficient unreserved cache space to accommodate
rapid suspend/resume of the VM. In other words, the size of
the unreserved cache space of the host computer has to be
equal to or greater than the expected size of the suspended
VM image (i.e., the size of the running state of the VM
maintained in memory). It should be recognized that the
unreserved cache space of the host computer may have been
reduced as a result of reservations made against the cache
space in accordance with step 220 described below by other
VMs that are enabled for rapid suspend/resume and already
powered on. In one embodiment, the cache space of the host
computer is provided by only the local cache space of the host
computer (e.g., space of local SSD 163 for host computer
150). In another embodiment, the cache space of the host
computer is provided by only the shared cache space (e.g.,
space of shared SSD array 164). In other embodiments, the
cache space ofthe host computer is provided by both the local
cache space of the host computer and the shared cache space.

If there are no host computers with sufficient cache capac-
ity at step 216, an error is returned at step 217 and the VM is
not powered on. On the other hand, if a host computer with
sufficient cache capacity is found at step 216, that host com-
puter is selected at 218 as the host computer in which the VM
will be powered on. At step 220, virtual machine management
server 140 makes a reservation against the cache space of host
computer in the amount equal to the expected size of the
suspended VM image. Then, at step 222, the VM is powered
on in the host computer selected at step 218 in the normal
manner.

FIG. 3 is a flow diagram of a VM suspend process accord-
ing to an embodiment. In the VM suspend process shown in
FIG. 3, steps 310, 312, and 314 are carried out by virtual
machine management server 140, and steps 320, 322, 323,

US 9,250,827 B2

5

324, and 326 are carried out by a host computer (one of host
computers 150, 152, 154; in particular, its virtualization soft-
ware) in which the VM to be suspended is running. In addi-
tion, the cache referenced in the description below is the
cache in which the VM reserved space when it was powered
on.

The VM suspend process begins at step 310 when virtual
machine management server 140 selects a VM for suspen-
sion. The selection may be in response to an input by an
administrator or it may be an automatic selection when virtual
machine management server 140 detects that the VM has
been idle or has been in a disconnected state for longer than a
predetermined amount of time (e.g., 1 hour). At step 312,
virtual machine management server 140 issues a command to
the host computer of the selected VM to suspend the VM.
When, at step 314, virtual machine management server 140
receives an acknowledgement from the host computer that the
state of VM selected for suspension has been successfully
saved to a checkpoint file, virtual machine management
server 140 reduces the size of the cache by the size of the
VM'’s checkpoint file. The cache size is reduced in this man-
ner as a way to ensure that DRS 141 continues to reserve the
cache space needed to store the VM’s checkpoint file.
Because reservations are in general made for executing VMs,
without this cache size reduction, DRS 141 may make reser-
vations on cache space that is being used to store the VM’s
checkpoint file.

Upon receiving the command from virtual machine man-
agement server 140 to suspend the selected VM at step 320, a
cache manager of the host computer at step 322 compares the
expected size of the suspended VM with the free space avail-
able in the cache. If the expected size of the suspended VM is
greater than the free space available in the cache (e.g., in
situation where data blocks from other 1Os have filled up the
cache), step 323 is executed where the cache manager accord-
ing to its eviction policy (e.g., an eviction policy based on
least recently used or least frequently used) evicts data blocks
from the cache. If these blocks are not yet committed to the
data store, then they will be sent to shared disk array 170 in
sufficient number to accommodate the saving of the sus-
pended VM in the cache at step 324. Ifthe expected size of the
suspended VM is less than or equal to the free space available
in the cache, step 324 is executed where a checkpoint module
of'the host computer saves the state of the VM in the cache, in
particular to a checkpoint file whose data blocks are stored in
the cache. At step 326, the cache manager “locks” the check-
point file in the cache to prevent the data blocks of the check-
point file from being evicted from the cache as 1Os are being
generated while the data blocks of the checkpoint file are
maintained in the cache. It should be recognized that without
this locking mechanism, not all of the data blocks of the
checkpoint file may reside in the cache as a result of eviction
and could cause a delay in the resumption of the suspended
VM.

In general, embodiments described herein can handle sus-
pend storms much faster relative to conventional techniques,
because [Os associated with suspend operations of VMs that
are enabled for rapid suspend/resume are being handled by
the local SSD or the shared SSD array which has lower 10
latency and higher throughput than rotating disk-based stor-
age arrays. In addition, some embodiments throttle VM sus-
pend operations to a certain maximum per hour by placing
them in a queue and processing them in accordance with the
throttling policy. This ensures a wider dispersion of VM sus-
pend operations during suspend storms.

FIG. 41is aflow diagram of a VM resume process according
to an embodiment. The steps shown in FIG. 4 are carried out

5

10

15

20

25

30

35

40

45

50

55

60

65

6

by virtual machine management server 140. The cache refer-
enced in the description below is the cache in which the VM
reserved space when it was powered on.

The VM resume process begins at step 410 when virtual
machine management server 140 receives a request to resume
a VM. This request may be received, for example, whena VDI
user reconnects to a VM that is running an instance of his or
her remote desktop. At step 412, virtual machine manage-
ment server 140 determines if the VM is suspended in a
shared cache, e.g., shared SSD array 164 (i.e., the checkpoint
file of the VM is stored in the shared cache). If it is, virtual
machine management server 140 at step 414 selects a host
computer in which to resume the VM. The selection may be
made by DRS 141 according to resource availability in the
cluster of host computers being managed by virtual machine
management server 140. After selecting the host computer at
step 414, virtual machine management server 140 at step 416
issues a command to a checkpoint module in the selected host
computer to resume execution of the VM. Then, at step 430,
virtual machine management server 140 increases size of the
cache in which the VM was suspended by the size of the
suspended VM image so that the cache space previously
occupied by the suspended VM image can be made available
for use, and makes a reservation against the shared cache
space in the amount equal to the size of the suspended VM
image so that, if the VM should be suspended again, sufficient
cache space will be available to accommodate this.

If at step 412, virtual machine management server 140
determines that the VM is suspended in a local cache of a host
computer (e.g., local SSD 163 of host computer 150), virtual
machine management server 140 at step 420 issues a com-
mand to a checkpoint module of the host computer with the
local cache containing the suspended VM image to resume
execution of the VM. Subsequent to the VM being resumed in
that host computer, DRS 141 may, according to the resource
scheduling policies implemented therein, determine that the
host computer is overloaded and at step 422 determine that
migration of the resumed VM (vMotion) is needed. The
migration of the resumed VM is carried out according to
known techniques at step 424. Exemplary implementations of
migration of VMs while the VMs are executing (sometime
referred to as “live migration™) are described in detail in U.S.
Pat. No. 7,484,208 which issued on Jan. 27, 2009, and U.S.
Pat. No. 7,680,919, which issued on Mar. 16, 2010. These two
patents are expressly herein incorporated by reference in their
entirety. After step 424, step 430 is carried out as described
above (except the reservation is made against the local cache
space). [f vMotion is not needed, step 424 is skipped and step
430 is executed as described above (except the reservation is
made against the local cache space) after step 422.

FIG. 5 is a conceptual diagram that illustrates an example
of cache reservations according to one or more embodiments.
In the example illustrated in FIG. 5, cache reservations made
against cache space of host computer 150 are depicted and it
is assumed that the cache ofhost computer 150 is provided by
local SSD 163 or shared SSD 164. It is further assumed that
the size of the cache is 72 GB, and six VMs are running in host
computer 150, namely VM1, VM2, VM3, VM4, VM5 and
VM6, with only VM1, VM2, VM4, and VM6 enabled for
rapid suspend/resume. Executing images of VM1, VM2,
VM4, and VM6 have sizes of 4 GB, 6 GB, 4 GB, and 4 GB,
respectively. As shown in table 500, which depicts the state of
the cache, at the beginning of the illustrated process, the cache
sizeis 72 GB and it is assumed for purposes of illustration that
there is no free space, i.e., data blocks of IOs have been issued
previously in sufficient numbers to have used up all of the
cache space. A total of 18 GB of cache reservations have been

US 9,250,827 B2

7

made for the VMs that have been enabled for rapid suspend/
resume and the size of the cache reservations for each of the
VMs is illustrated in broken lines in cache space 501.

Arrow 511 depicts a process step in which VM1 is sus-
pended and 4 GB of cached data block are evicted (prior to the
suspension) because there is no space in the cache to accom-
modate the executing image of VM1 which is 4 GB in size.
Cache space 502 shows the state of the cache after VM1 is
suspended. The portion of cache space 502 that is storing the
executing image of VM1 is depicted as being locked. As
depicted in table 500, the total cache size is reduced by the
size of the locked portion to 68 GB and the total cache reser-
vations is also reduced to 14 GB, reflecting the fact that DRS
141 is no longer making a cache reservation for VM1 because
VM is no longer executing.

Prior to the process step depicted by arrow 512 (suspend
VM2), it is assumed for purposes of illustration that 6 GB of
the cache space has been freed (e.g., as a result of data blocks
stored in the cache being invalidated or demoted to storage),
which is large enough to accommodate the saving of the
executing image of VM2. In this state, when VM2 is sus-
pended, data blocks of the cache need not be evicted to
accommodate the saving of the executing image of VM2.
Cache space 503 shows the state of the cache after VM2 is
suspended. It shows locked portions for suspended images of
VM1 and VM2 and reserved portions for VM4 and VM6. As
depicted in table 500, the total cache size is reduced to 62 GB
(as a result of 6 GB being locked for VM2), the size of cache
reservations reduced to 8 GB (reflecting the fact that DRS 141
is no longer making a cache reservation for VM2), and free
space reduced to 0 GB (as result of the executing image of
VM2 being saved into all of the previously available free
space).

Arrow 513 depicts a process step in which the suspended
VMs, namely VM1 and VM2 are resumed. Cache space 504
shows the state of the cache after these VMs have resumed. It
shows no locked portions and reserved portions for VM1,
VM2, VM4, and VM6. As depicted in table 500, the total
cache size is increased by 10 GB which is equal to the com-
bined size of the restored images of VM1 and VM2, because
this space is now available for DRS 141 to make reservations
against. In addition, the size of cache reservation and the size
of' the free space are shown to have increased by 10 GB also.

In some embodiments, the configuration file for the VM, in
addition to indicating whether it is enabled for rapid suspend/
resume, may also specify suspend/resume schedule, and DRS
141 would be configured to determine from this schedule how
long the VM’s suspended image needs to be maintained in the
cache. If the schedule indicates that the VM’s suspended
image no longer needs to be maintained in the cache, DRS
141 may increase the total cache size by the size of the
suspended VM image and unlock the data blocks of the sus-
pended VM image so that they can be evicted. DRS 141 also
may, in accordance with the schedule, demote the suspended
VM image to storage and promote the suspended VM image
from storage “just in time” for VM resume. In addition, the
configuration file for the VM may specify whether rapid
suspend/resume is “best effort.”” This setting would allow the
VM to be powered-on even if sufficient cache space is not
available to store its executing state.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored in computer systems. For example, these operations
may require physical manipulation of physical quantities—
usually, though not necessarily, these quantities may take the
form of electrical or magnetic signals, where they or repre-
sentations of them are capable of being stored, transferred,

10

15

20

25

30

35

40

45

50

55

60

65

8

combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to in terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the invention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten in accordance with the teachings herein, or it may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainframe computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or
more computer program modules embodied in one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system—com-
puter readable media may be based on any existing or subse-
quently developed technology for embodying computer pro-
grams in a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs)—CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code is stored and
executed in a distributed fashion.

Although one or more embodiments of the present inven-
tion have been described in some detail for clarity of under-
standing, it will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as illustrative and not restrictive, and the scope of the claims
is not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

Virtualization systems in accordance with the various
embodiments may be implemented as hosted embodiments,
non-hosted embodiments or as embodiments that tend to blur
distinctions between the two, are all envisioned. Furthermore,
various virtualization operations may be wholly or partially
implemented in hardware. For example, a hardware imple-
mentation may employ a look-up table for modification of
storage access requests to secure non-disk data.

Many variations, modifications, additions, and improve-
ments are possible, regardless the degree of virtualization.
The virtualization software can therefore include components
of a host, console, or guest operating system that performs
virtualization functions. Plural instances may be provided for
components, operations or structures described herein as a
single instance. Finally, boundaries between various compo-
nents, operations and data stores are somewhat arbitrary, and
particular operations are illustrated in the context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within the scope of the inven-

US 9,250,827 B2

9

tion(s). In general, structures and functionality presented as
separate components in exemplary configurations may be
implemented as a combined structure or component. Simi-
larly, structures and functionality presented as a single com-
ponent may be implemented as separate components. These
and other variations, modifications, additions, and improve-
ments may fall within the scope of the appended claim(s).

I claim:

1. A method of resuming execution of a virtual machine
(VM) from a suspended state in one of a plurality of host
computers each having a local cache and connected to a
shared cache, said method comprising:

determining whether a suspended image of the VM is

stored in the shared cache;

if the suspended image of the VM is stored in the shared

cache, selecting one of the host computers as a host
computer for the VM and issuing a command to the
selected host computer to resume execution of the VM
therein; and

ifthe suspended image of the VM is not stored in the shared

cache, issuing a command to resume execution of the
VM to one of the host computers that has the local cache
in which the suspended image of the VM is stored to
resume execution of the VM therein.

2. The method of claim 1, wherein, if the suspended image
of the VM is stored in the shared cache, one of the host
computers is selected as the host computer according to
resource availability.

3. The method of claim 1, further comprising:

if the suspended image of the VM is stored in the shared

cache, increasing available capacity of the shared cache
by the size of the suspended image of the VM after the
execution of the VM has been resumed; and

ifthe suspended image of the VM is not stored in the shared

cache, increasing available capacity of the local cache
by the size of the suspended image of the VM after the
execution of the VM has been resumed.

4. The method of claim 1, further comprising:

ifthe suspended image of the VM is not stored in the shared

cache, after execution of the VM is resumed in one of the
host computers, migrating the VM to another one of the
host computers for execution therein.

5. The method of claim 1, wherein the local caches are solid
state drives (SSDs) and the shared cache is an SSD array.

6. A non-transitory computer readable medium comprising
instructions for causing a computer system to carry out a
method of resuming execution of a virtual machine (VM)
from a suspended state in one of a plurality of host computers
each having a local cache and connected to a shared cache,
said method comprising:

determining whether a suspended image of the VM is

stored in the shared cache;

if the suspended image of the VM is stored in the shared

cache, selecting one of the host computers as a host
computer for the VM and issuing a command to the
selected host computer to resume execution of the VM
therein; and

ifthe suspended image of the VM is not stored in the shared

cache, issuing a command to resume execution of the
VM to one of the host computers that has the local cache
in which the suspended image of the VM is stored to
resume execution of the VM therein.

7. The non-transitory computer readable medium of claim
6, wherein, if the suspended image of the VM is stored in the
shared cache, one of the host computers is selected as the host
computer according to resource availability.

5

15

20

25

30

40

45

50

55

60

10

8. The non-transitory computer readable medium of claim
6, wherein the method further comprises:

if the suspended image of the VM is stored in the shared
cache, increasing available capacity of the shared cache
by the size of the suspended image of the VM after the
execution of the VM has been resumed; and

ifthe suspended image of the VM is not stored in the shared
cache, increasing available capacity of the local cache
by the size of the suspended image of the VM after the
execution of the VM has been resumed.

9. The non-transitory computer readable medium of claim

6, wherein the method further comprises:

ifthe suspended image of the VM is not stored in the shared
cache, after execution ofthe VM is resumed in one ofthe
host computers, migrating the VM to another one of the
host computers for execution therein.

10. The non-transitory computer readable medium of claim

6, wherein the local caches are solid state drives (SSDs) and
the shared cache is an SSD array.

11. A virtualized computer system comprising:

a plurality of host computers each having one or more
virtual machines (VMSs) running therein and a local
cache;

a shared cache accessible by the host computers, and a
management server configured to carry out steps of
resuming execution of a VM from a suspended state, the
steps including:

determining whether a suspended image of the VM is
stored in the shared cache,

if the suspended image of the VM is stored in the shared
cache, selecting one of the host computers as a host
computer for the VM and issuing a command to the
selected host computer to resume execution of the VM
therein, and

ifthe suspended image of the VM is not stored in the shared
cache, issuing a command to resume execution of the
VM to one of the host computers that has the local cache
in which the suspended image of the VM is stored to
resume execution of the VM therein.

12. The virtualized computer system of claim 11, further
comprising a storage device accessible by the host computers,
the storage device having higher input/output latency and
lower input/output throughput than the shared cache.

13. The virtualized computer system of claim 12, wherein
the storage device includes rotating disks and the shared
cache does not include rotating disks.

14. The virtualized computer system of claim 13, wherein
the storage device is a disk-based storage array and the shared
cache is a solid state drive (SSD).

15. The virtualized computer system of claim 14, wherein
the local cache is an SSD.

16. The virtualized computer system of claim 11, wherein,
if the suspended image of the VM is stored in the shared
cache, one of the host computers is selected as the host com-
puter according to resource availability.

17. The virtualized computer system of claim 16, wherein
the steps further include:

if the suspended image of the VM is stored in the shared
cache, increasing available capacity of the shared cache
by the size of the suspended image of the VM after the
execution of the VM has been resumed.

18. The virtualized computer system of claim 16, wherein

the steps further include:

ifthe suspended image of the VM is not stored in the shared
cache, increasing available capacity of the local cache
by the size of the suspended image of the VM after the
execution of the VM has been resumed.

US 9,250,827 B2
11 12

19. The virtualized computer system of claim 16, wherein
the steps further include:

ifthe suspended image of the VM is not stored in the shared

cache, after execution of the VM is resumed in one of the
host computers, migrating the VM to another one of the 5
host computers for execution therein.

20. The virtualized computer system of claim 19, wherein
said another one of the host computers is selected based on
resource availability.

10

